Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression.

نویسندگان

  • Y Li
  • L Liu
  • J Kang
  • J G Sheng
  • S W Barger
  • R E Mrak
  • W S Griffin
چکیده

Cholinergic dysfunction in Alzheimer's disease has been attributed to stress-induced increases in acetylcholinesterase (AChE) activity. Interleukin-1 (IL-1) is overexpressed in Alzheimer's disease, and stress-related changes in long-term potentiation, an ACh-related cerebral function, are triggered by interleukin-1. Microglial cultures (N9) synthesized and released IL-1 in response to conditioned media obtained from glutamate-treated primary neuron cultures or PC12 cells. This conditioned media contained elevated levels of secreted beta-amyloid precursor protein (sAPP). Naive PC12 cells cocultured with stimulated N9 cultures showed increased AChE activity and mRNA expression. These effects on AChE expression and activity could be blocked by either preincubating the glutamate-treated PC12 supernatants with anti-sAPP antibodies or preincubating naive PC12 cells with IL-1 receptor antagonist. These findings were confirmed in vivo; IL-1-containing pellets implanted into rat cortex also increased AChE mRNA levels. Neuronal stress in Alzheimer's disease may induce increases in AChE expression and activity through a molecular cascade that is mediated by sAPP-induced microglial activation and consequent overexpression of IL-1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on Transdifferentiation of Bone Marrow Stromal Cells into Neuronal and Glial-Like Cells In Vitro by Different Inducers

Introduction: There are some evidences to suggest that bone marrow stromal cells (BMSCs) not only differentiate into mesodermal cells, but also adopt the fate of endodermal and ectodermal cell types. BMSCs can be a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system. Bone marrow stromal cells can be expanded rapidly in vitro and can...

متن کامل

Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures

Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...

متن کامل

Peripheral site acetylcholinesterase blockade induces RACK1-associated neuronal remodeling.

BACKGROUND Peripheral anionic site (PAS) blockade of acetylcholinesterase (AChE) notably affects neuronal activity and cyto-architecture, however, the mechanism(s) involved are incompletely understood. OBJECTIVE We wished to specify the PAS extracellular effects on specific AChE mRNA splice variants, delineate the consequent cellular remodeling events, and explore the inhibitory effects on in...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2000